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In  this paper we consider t'he flow field generated by a uniform electrostatic 
field in and about a pair of identical liquid drops immersed in a conducting 
fluid. It is assumed that the undisturbed electric field is parallel to the line 
joining the centres of the two drops. The flow field is due to the tangential 
electric stress over the surfaces of the drops and here this stress and the flow 
field are expressed in terms of bispherical harmonics. When the distance between 
the centres of the drops is many drop diameters the tangential electric stress 
and the flow field in and about one drop are unaffected by the presence of the 
other drop, as expected. When the distance between the centres of the drops is 
of the order of two drop diameters there is a substantial modification in the 
tangential electric stress at  the surfaces of the drops and in the induced flow 
field, especially in the region between the planes through the drop centres per- 
pendicular to the undisturbed electric field. 

1. Introduction 
The mechanics of the interaction of a d.c. electric field with a liquid drop im- 

mersed in an insulating liquid are well known. The drop becomes elongated in the 
direction of the field and usually bursts at  high fields (Garton & Krasucki 1964). 
When the liquid in which the drop is immersed is conducting, at  the drop surface 
there is an imbalance in the tangential component of the electric field stress and 
this generates a flow field in the drop and its surroundings (Taylor 1966). This was 
confirmed experimentally by Torza, Cox & Mason (1971), who investigated also 
the case where the applied field is an a.c. field. The development of the flow field 
about the drop and its surroundings was considered by Sozou (1973). 

The axisymmetric problem of two identical conducting drops immersed in 
an insulating liquid with the line joining their centres along the direction of the 
impressed d.c. field was investigated theoretically and experimentally by Latham 
& Roxburgh (1966) and by Brazier-Smith, Jennings & Latham (1971). The drops 
again become elongated in the direction of the impressed field but now the burst- 
ing occurs at lower fields. The interaction of an electric field with two liquid drops 
in a conducting fluid has not been investigated either theoretically or experi- 
mentally. The subject of this paper is the theoretical investigation of this problem 
for a d.c. field. For simplicity we restrict our analysis to the axisymmetric case 
of two identical drops whose surfaces remain approximately spherical. This 
enables us to express the electrostatic potential and velocity field in terms of 
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series of bispherical harmonics. The closer the drops are, the larger the number 
of harmonics needed for an accurate evaluation of the electrostatic field E and 
flow field v. In  our computations we used sufficient harmonics to enable us to  
express E and v accurately for cases where the distance between the centres of 
the drops is 1.1 drop diameters. For experimental testing of the theory set out 
in the following sections, the drops, when fairly close to each other, must be sup- 
ported because otherwise, as pointed out by Taylor (1968), the attraction be- 
tween them will destroy the assumed equilibrium configuration. 

2. Electromagnetic equations 
We consider two identical liquid drops, assumed spherical, immersed in an 

incompressible viscous conducting fluid. We use bispherical polar co-ordinates 
(6, T ), which for axisymmetric configurations are related to cylindrical polars 
( r ,  834 by 

(1) 
a sinh 6 a sin 7 

x =  r =  
cosh 5 - cos 7’  Gosh 5 - cos 7 ’ 

where a is a constant, the z axis is along the line joining the centres of the drops 
and the plane z = 0 bisects the line joining the centres of the two drops. The plane 
z = 0 corresponds to [ = 0 and the surfaces of the two drops correspond to 5 = to 
and 6 = - 6,. The interiors of the drops correspond to 

$ , < g < c c  and - o o < ~ <  -to, 
respectively. The radius R, of each drop is given by 

R, = a cosech go, (2) 

and the centres of the drops are a t  z = a coth to and :: = -a coth to, respectively. 
Owing to the overall symmetry of the problem we need only consider the half- 
space z >, 0, that  is 

We assume that the system is subjected to a uniform electric field which at  
infinity is parallel to the z axis and has magnitude E,. If, for the half-space 
5 >, 0,  we let the suffix 1 refer to the drop and the suffix 2 to the fluid surrounding 
it, it can easily be shown that for 5 > 0 the electrostatic potential O is given by 

>, 0. 

m 

m 

O2 = E,(cosh$-p)* B,sinh[(n++)~]P,(p)-E,z, (4) 
n=O 

where p = COST, A ,  and B, are constants to be determined and P,(p) is the 
Legendre polynomial of degree n. For 5 > 0, z may be expressed in the form 

z = 2b(cosh -p)+ S (2n + 1) exp [ - (n  + i) P,(,u). ( 5 )  

The electric field E is related t o  0 by E = - VO. At the surface of the drop we 
must. have continuity of O (or continuity of the tangential component of E) and 
continuity of the normal component of the electric current; that  is, continuity 



Electrohydrodynamics of a pair of liquid drops 341 

cosh to 
4 
4 
1.5 
1.5 
1.1 
1 . 1  
1.05 
1.05 

h -a0 -a1 - a 2  . 
10 0.364 0.069 0.012 
0.05 0.352 0.177 0.039 

10 0.723 0.404 0.199 
0.05 0.560 0-870 0.601 

10 1,207 1.165 0.920 
0.05 0.641 1.595 1.959 

10 1.459 1.662 1.478 
0.05 0.655 1.772 2.479 

-a3 

0.002 
0.007 
0.093 
0-331 
0.695 
1.892 
1.249 
2.769 

TABLE 1.  Values of a,, a,, a2.  a3 and aZ4 for some to, for h = 10 
and h = 0.05 

- a 2 4  

1.5 x 
7.9 x 10-21 
1.1 x 10-7 
3.9 x 10-7 
5.6 x 10-4 
1.2 x 10-3 
1.5 x 
2.6 x 

of the normal component of rE, where CT denotes electrical conductivity. From 
(3)-(5) it  follows that the continuity of CD at 

A ,  exp [ - (n + Q) to] = B, sinh (n + 4) to - 2*a( 2n + 1) exp [ - (n + Q) to] 
5, requires that 

(6) 

and the continuity of the normal component of rVCD requires that 

where h = al/u2. If we now multiply both sides of (7) by cosh to -,u and, making 
use of (6) and the relationship 

Pn+l)pP,(p) = (n+ l)Pn+,+nP,-,, (8) 

equate coefficients of P, (m = 0, 1,2,3,  . . .) on the two sides of the resulting 
expression, after a little rearrangement we obtain the following set of equations: 

(n+ 1)a,,,(h+c,+,)+a,[(h- 1)sinht0-(2n-t- 1) (h+c,)cosht,] 

+na,-,(h+c,-,) = - 2 h [ ( n + 1 ) ( 2 n + 3 )  (1+~ , , , ) - (2n+1)~(1+c , ) e5o  

+ n ( 2 n - ~ ) ( ~ + c , _ l ) e 2 ~ ~ ] e x p [ - ( n + ~ ) t o l  (n 11, (9) 

where a, = A ,  exp [ - (n + 4) E,], c, = coth (n + 4) to and a_, = 0. 
The first m equations of the set (9) contain the m + 1 unknowns a,, a,, a2, . . . , a,. 

We have solved this set on the assumption that a,  = 0; that is, we have solved 
the first m equations of this set for a,, a,, . . . , am-,. The quantity cosh E, is the 
ratio of the distance between the centres of the drops to a drop diameter. Thus 
the smaller go is the larger the number of a’s required and therefore the number of 
equations to be solved for an accurate evaluation of the electric field. For com- 
putational uniformity we set a25 = 0 and solved the set (9) for all values of to con- 
sidered. Table 1 shows values of a,, a,, a2, a3 and aZ4 for some to for the cases 
h = 10 and h = 0.05. For large and moderate values of to, say to B 2, the [al’s 
decrease monotonically and rapidly and a24 is negligible. As to decreases all the 
laj’s increase but lan[ increases faster than ~u,-~~. Thus, as to decreases, a t  some 
stage la,[ begins to increase with n until it reaches a maximum and thence as 
n increases lan[ decreases. For example when cosht, = 1.5 and h = 0.05, \all is 
the largest of the laj’s and when cosht, = 1.05 and A = 0.05, \a3[ is the largest. 
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FIGURE 1.  Values of ( p f 7 ) ~  on the sphere 
positive-z axis and the radius from the centre to the surface of the drop, 

= to as functions of 8, the angle between the 

Y = (2+h)Z(P511)E/9€0EO(KI-hKZ). 

, h = 10; ----, h = 0.05; -, one drop only. The numbers on the curves are values ...... 
of t o .  

Since E = - V @ ,  it is obvious from (3) and table 1 that, if we use only the 
first twenty-five A’s occurring in (3) in evaluating E, our results will be reason- 
ably accurate when cosh to > 1-1. For evaluating E accurately for Gosh to < 1.1, 
we may have to make use of more than the first twenty-five A’s occurring in 
(3). This was confirmed by detailed calculations. When we increased the number 
of A’s used to evaluate E to 29, E (to, p) was practically unaffected for to 2 cosh-l 
1.1, whereas when to = cosh-l1.05, E(E0,p) had not yet converged to a limit. 

The tangential stress (p,JE exerted on the surface of the drop fl  = to by the 
electric field E is given by 

(P&)E = EoE7[K1E1g- K2 E251’ (10) 

where e0 is the permittivity of free space, K the dielectric constant and E, and E, 
the tangential and normal components, respectively, of the electric field on the 
surface 6 = to. On making use of (7)’ (lo) becomes 

When only one drop is present, corresponding to a cosech flo = R, as E0 --f co, 

(p5JE = 9eo Eg (2 + ( K ~  - k2) sin 8 cos 8, ( 1 1 4  
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where 8 is the angle between the undisturbed electric field and the radius from 
the centre of the sphere to the drop surface. Figure 1 shows values of ( P ~ , , ) ~  
for some to for the cases h = 10 and h = 0.05. 

3. The flow field 
As pointed out by Taylor (1966), the tangential electric stress a t  the drop 

surfaces generates a flow field such that the tangential hydrodynamic stress 
associated with it balances ( P ~ , , ) ~  at < = & to. The imbalance in pee, the component 
of the stress (hydrodynamic and electric) normal to the drop surface, is com- 
pensated by the surface tension associated with a suitable drop deformation. 
Here we assume that the surface tension is sufficiently large so that the drop 
deformations are small and the drop surfaces are approximately spherical. We 
are not going to estimate drop deformat'ions here and thus we do not need to 
evaluatepCe. 

Following Taylor (1966) we assume that the velocity field is small and ignore 
the convection of the electrostatic surface charge by the hydrodynamics currents; 
that  is, we assume that the electrostatic potential calculated in § 2 is unaffected 
by the induced motion. We also assume that  the inertia terms in the momentum 
equation are negligible in comparison with the viscous ones. Thus our steady- 
state momentum equation becomes 

vp = l y W V ,  (12) 

where p denotes pressure, v a coefficient of kinematic viscosity and p density. 

axisymmetric and in terms of a stream function $ 
Owing to the overall geometry of the problem the velocity field is obviously 

A suitable form of $ such that the corresponding velocity field satisfies (12) is 
(Stimson & Jeffery 1926) 

where Un(5) = a; exp [ - (n - &) 51 + b; exp [(n - +) 5)] + c; exp [ - (n + #) (1 
+dAexp[(n+#)t]. (15) 

The constantsa;, b;, c; and d; are determined from the boundary conditions. Since 
the velocity field is finite within the drop, where t may tend to infinity, we must 
have 

bin = d;, = 0. 

The symmetry about t,he plane 5 = 0 of ( P ~ ~ ) ~ ,  which generates the flow field, 
requires that 

At the drop surface the normal component of the velocity is zero and the tan- 
gential component is continuous, that is 

aLn + bhn = 0, cLn +dLn = 0. (17 )  

U.n(t0) = u2n(&) = 0, Uin(to) = ULn(t0). (1% (19) 



344 c .  sozou 

0 
z 

FIGURE 2. Streamlines in the upper half-plane of a meridian section for the case of only one 
drop. The numbers on the curves are values of 401 @l/A.  

From (15)-( 19) we deduce that 

U,, = C,{exp C - (n - 6 )  (6 - toll - ~ X P  [ - (n + $1 (6 - &JllJ 

D, = (2n - 1) sinh 2 t0  - 4 sinh (12 - 4) go cosh (n + 8) to, 

(20) 

(22) 

U2n = 4C,[sinh (n - +) Esinh (n + 8) to - sinh (n + 8) sinh (n - B) tO]/Dn, (21) 
where 

and the constants C, are evaluated from balancing the tangential stress ptr 
(both hydrodynamic and electric components) across the surface 5 = to. The 
hydrodynamic part of pC7 ,  say ( P ~ ? ) ~ ,  is given by 

Since a t  = to 
when we make use of (11) and (24) we obtain 

@)57)E + (P)f$)2H - (Pfq)lH = '3 

From (20)-(32) and (26) we can determine C,, which turns out to be given by 

C, = f,Dn/2(3n + l)v1p1{4 [M sinh (12 + $) to + cosh (n + 8) to] sinh (n  - 4) to 
- (2% - 1) sinh 2t0),  

where M = v2p2/vlp1. Hence we can determine U,(t) and the flow field. 
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0 0‘ 

z 

FIGURE 3. Streamlines in and about the drop = cosh-11.5, in the first quadrant of a meri- 
dian section of the T ,  z plane, for the ca,se M = 6 .  The numbers on the curves are values of 
401+l/A. The centre of the drop i s  at 0’. ( a )  h = 10. ( b )  h = 0.05. 

When only one drop is present ( P ~ ~ ) ~ ,  given by (1 1 a) ,  is symmetric about the 
plane through the centre of the drop perpendicular to the undisturbed electric 
field E and therefore so must be the flow field generated. For this particular case 
$, in terms of spherical polar co-ordinates (R, 8, q5) with the origin a t  the centre of 
the drop and the axis 0 = 0 along the undisturbed electric field, is given by (Taylor 
1966) 

(27) 

where A = 0-9 F , E ! ( K ~  - hlc2)/v1pl( I + M )  ( 2  + h)2. The flow field for this particular 
case is shown in figure 2 .  

In  the more general case considered here, of two drops with the line joining 
their centres along the direction of the impressed field, the flow field must be 

A[(R,/R)2- I] sin2 0 cos 8, R, < R, Ro ’ R)l A[(R/R,)2 - (R/R,)5] sin28 cos 8, 
$ = (  
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0 0‘ 
z 

FIGURE 4. Streamlines in and about the drop Eo = cosh-l 1.1, in the first quadrant of a 
meridian section of the r, z plane, for the case M = 5 .  The numbers on the curves are values of 
401$l/A. The centre of the drop is at  0’. ( a )  = 10. ( b )  h = 0.05. 

computed from ( 14). We have chosen M = 5 and computed 11- for several pairs of 
h and to. Figures 3 and 4 show some of our results. The integrals occurring in 
(26) were evaluated by means of Simpson’s rule. Owing to the oscillatory nature 
of some of the Legendre polynomials occurring in the integrand we restricted the 
step length to 0.01. For to 2 1 the first few terms on the right-hand side of (14) 
provided a reasonable approximation to yk, but for programming uniformity we 
assumed 28 

1c. = (cosh&-P)-W-P2)+ s U,(OPA(P) (28) 
n=l 

for all data considered. The solution of the problem for one set of data takes about 
140 s on the 1907 ICL computer of Sheffield University. 

When fl, = O[cosh-l(lO)], that is when the distance between the centres of 
the drops is of order ten drop diameters, (p57)E and the flow field within one drop 
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diameter from the centre of each drop are practically unaffected by the presence 
of the other drop. As to decreases (p5T)E is modified and so is the flow field. As 
expected and as shown in figure 1, ( p f 4 ) E  is affected more substantially in the 
region around the points of closest approach of the drop surfaces (p = - 1) than 
on the surface aroundp = 1. The presence of the other drop and the modification 
of ( p S J E  result in the modification of the flow field in and about the reference 
drop. Comparison of figures 3 and 4, which show streamlines for the cases 
to = cosh-ll-5 and to = cosh-11.1 for ilf = 5, with figure 2 confirms this. In  
figures 3 and 4 the structure of the flow field is substantially different from that 
shown in figure 2. The symmetry of the flow field about the plane half-way 
between the drops perpendicular to the undisturbed electric field, as expected, 
is destroyed. The eddies in the region between the drops but outside them be- 
come closed and the adjacent eddies remain open and extend up to the plane of 
symmetry of the system. As the distance between drops having conductivity 
much higher than the surrounding medium is decreased (see figures 3a and 4a)  
the vorticity near the drop surfaces and the open-eddy flow field are enhanced. 
I n  the case of drops with low conductivity in comparison with the surrounding 
fluid (figures 3b and 4 b ) ,  ( P ~ , , ) ~  and the intensity of the flow field around the 
region of the points of closest approach of the drops are substantially reduced if 
the drops are fairly close together. 

The pressure p satisfies Laplace's equation and, apart from an additive con- 
stant, for the particular configuration considered here can be expressed as 

m 

P I  = (co~h<-~U)' C Fnexp[-(n+B)<IPn(p), (29) 
n=O 

The constants Fn and G, occurring in (29) and (30) can be evaIuated from (12) 
in terms of Cn. From (12) and (13) we obtain 

where 

If we now substitute in (31) the appropriate forms of p and II. [once p l  and 
and once p 2  and @J, making use of the relat'ionship 

(2n + 1) pP; = (9% + 1)  PC,+ %PA+,, (32) 

after some lengthy manipulations we can express both sides of (3  1) as series in 
(i-,$)PL(m = 1 , 2 , 3 ,  ...). If we then equate coefficients of (l-p2)PL on the 
two sides of the resulting equation we obtain 

&-l-Fm = (m + I )  {2(m+ 2) - [4m- 3 + ( 2 m +  3) e2co] Am} 

+ (m - I )  { [ ~ m  - 3 + (4m + 3) e250] Am-l - 2(m - 2) Am-2e250), (33) 

x [ ( 2 m  - 3 ) p m 4  + (4m + 3) sm-l - 2(m - 2) pm41 = H,, (34) 
G, - = 4(m + 1)  [2(m + 2)p,,+l- (4m - 3)pm- (am + 3) SmI +4(m-  1) 
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where hm = Cm exp [(m - 8 )  601 9 prn = c m  sinh [(m + fi) E0I /Dm 
and s, = Cm sinh [(m - 4) 6,]/D,. 

Equations (33) and (34) are valid form 3 1 and A_, = p-, = s - ~  = 0. When the 
velocity field has been calculated the right-hand sides of (33) and (34) are known 
and thus if we prescribe Fo and Go we can evaluate F, and G, for all m 2 1.  Since 
for 6 > 0, 

(cosh 6 -p)3 2 exp [ - (n + i) (1 P,(p) = 2-8, 

it follows from (29) and (33) that Fo can be arbitrarily specified. In  fact, the 
quantity 24F0 represents the pressure at 6 = CQ. 

Equations (30) and (34) show that we cannot arbitrarily specify Go. It is 
obvious from (30) that Go must be so chosen that G,+O as m -+ 00. We chose 
Go = 0 and, from (34), we evaluated Grit (m 1) for several sets of data, that is 
for several sets of to, h and M .  We found that for every set of data the sequence 
GI, G,, G,, . . . quickly converged to some constant, say S, which is dependent on 
the particular set of data chosen. We must therefore have 

a 

m = l  
G o = - & ' = -  C H ni * 
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